KANUMA™ is indicated for the treatment of patients with a diagnosis of Lysosomal Acid Lipase (LAL) deficiency.

INDICATIONS AND USAGE

KANUMA™ is a hydrolytic lysosomal cholesteryl ester and triacylglycerol-specific enzyme indicated for the treatment of patients with a diagnosis of Lysosomal Acid Lipase (LAL) deficiency.

WARNINGs AND PRECAUTIONS

- **Hypersensitivity Reactions Including Anaphylaxis:** Observe patients during and after the infusion. Consider interrupting the infusion or lowering the infusion rate, based on the severity of the reaction. If a severe hypersensitivity reaction occurs, immediately stop the infusion and initiate appropriate treatment. Pre-treatment with antipyretics and/or antihistamines may prevent subsequent reactions in those cases where symptomatic treatment is required. (5.1)

- **Hypersensitivity to Eggs or Egg Products:** Consider the risks and benefits of treatment in patients with known systemic hypersensitivity reactions to eggs or egg products. (5.2)

ADVERSE REACTIONS

The most common adverse reactions are:

- Patients with Rapidly Progressive LAL Deficiency Presenting within the First 6 Months of Life: diarrhea, vomiting, fever, rhinitis, anemia, cough, nasopharyngitis, and urticaria. (6.1)
- Pediatric and Adult Patients (≥8%): headache, fever, oropharyngeal pain, nasopharyngitis, and urticaria. The majority of reactions occurred during or within 4 hours of the infusion. (6.1)

Full Prescribing Information

1 INDICATIONS AND USAGE

KANUMA™ is indicated for the treatment of patients with a diagnosis of Lysosomal Acid Lipase (LAL) deficiency.

2 DOSAGE AND ADMINISTRATION

2.1 Dosage

Patients with Rapidly Progressive LAL Deficiency Presenting within the First 6 Months of Life: The recommended starting dosage is 1 mg/kg as an intravenous infusion once weekly. For patients who do not achieve an optimal clinical response, increase to 3 mg/kg once weekly. (2.1)

Pediatric and Adult Patients with LAL Deficiency: The recommended dosage is 1 mg/kg as an intravenous infusion once every other week. (2.1)

Administration Instructions (2.3):

Infuse over at least 2 hours.

- Consider further prolonging the infusion time for the 3 mg/kg dose or if a hypersensitivity reaction occurs.
- Consider a 1-hour infusion for the 1 mg/kg dose in patients who tolerate the infusion.

Dosage Forms and Strengths

Injection: 20 mg/10 mL (2 mg/mL) solution in single-use vials. (3)

Contraindications

None. (4)

Adverse Reactions

The most common adverse reactions are:

- Patients with Rapidly Progressive LAL Deficiency Presenting within the First 6 Months of Life (≥30%): diarrhea, vomiting, fever, rhinitis, anemia, cough, nasopharyngitis, and urticaria. (6.1)
- Pediatric and Adult Patients (≥8%): headache, fever, oropharyngeal pain, nasopharyngitis, asthenia, constipation, and nausea. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Alexion at 1-844-259-6783 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch

See 17 for PATIENT COUNSELING INFORMATION.

Revised: 12/2015
Due to the potential for anaphylaxis, appropriate medical support should be readily available when KANUMA is administered. If anaphylaxis occurs, immediately discontinue the infusion and initiate appropriate medical treatment. Observe patients closely during and after infusion. Inform patients of the signs and symptoms of anaphylaxis, and instruct them to seek immediate medical care should signs and symptoms occur.

The management of hypersensitivity reactions should be based on the severity of the reaction and may include temporarily interrupting the infusion, lowering the infusion rate, and/or treatment with antihistamines, antipyretics, and/or corticosteroids. If interrupted, the infusion may be resumed at a slower rate with increases as tolerated. Pre-treatment with antipyretics and/or antihistamines may prevent subsequent reactions in those cases where symptomatic treatment was required. If a severe hypersensitivity reaction occurs, immediately discontinue the infusion and initiate appropriate medical treatment.

Consider the risks and benefits of re-administering KANUMA following a severe reaction. Monitor patients, with appropriate resuscitation measures available, if the decision is made to re-administer the product.

5.2 Hypersensitivity to Eggs or Egg Products

KANUMA is produced in the egg whites of genetically engineered chickens. Patients with a known history of egg allergies were excluded from the clinical trials. Consider the risks and benefits of treatment with KANUMA in patients with known systemic hypersensitivity reactions to eggs or egg products.

6 ADVERSE REACTIONS

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

In clinical trials, a total of 106 patients received treatment with KANUMA. The data described below reflect exposure to KANUMA in 75 patients who received KANUMA at dosages up to 3 mg/kg once weekly in clinical trials:

- Nine patients (5 males, 4 females) who had growth failure or other evidence of rapidly progressive LAL deficiency presenting within the first 6 months of life received KANUMA for up to 165 weeks (median 60 weeks) at escalating doses ranging between 0.35 mg/kg and 5 mg/kg once weekly (see Clinical Studies [14.1]). The recommended initial dosage for these patients is 1 mg/kg escalating to 3 mg/kg once weekly (see Dosage and Administration [2.1]).
- 66 pediatric and adult patients with LAL deficiency aged 4 to 58 years (33 males, 33 females) received KANUMA 1 mg/kg every other week up to 36 weeks.

Table 2 summarizes the most common adverse reactions occurring in >30% of patients with rapidly progressive LAL deficiency presenting within the first 6 months of life receiving KANUMA.

Table 2: Most Common Adverse Reactions* in Patients with Rapidly Progressive LAL Deficiency Presenting within the First 6 Months of Life

<table>
<thead>
<tr>
<th>Adverse Reactions</th>
<th>KANUMA N=9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>6 (67)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>6 (67)</td>
</tr>
<tr>
<td>Fever</td>
<td>5 (56)</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>5 (56)</td>
</tr>
<tr>
<td>Anemia</td>
<td>4 (44)</td>
</tr>
<tr>
<td>Cough</td>
<td>3 (33)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>3 (33)</td>
</tr>
<tr>
<td>Urticaria</td>
<td>3 (33)</td>
</tr>
</tbody>
</table>

Reported in more than 30% of patients receiving KANUMA

Other less common adverse reactions reported in patients with rapidly progressive disease presenting within the first 6 months of life who received KANUMA included hypotonia, decreased oxygen saturation, retching, sneezing, and tachycardia.

Table 3 summarizes the most common adverse reactions that occurred in ≥28% of pediatric and adult patients with LAL deficiency receiving KANUMA at a dosage of 1 mg/kg once every other week during the 20-week double-blind treatment period (see Clinical Studies [14.2]).

Table 3: Most Common Adverse Reactions* in Pediatric and Adult Patients with LAL Deficiency

<table>
<thead>
<tr>
<th>Adverse Reactions</th>
<th>KANUMA N = 36</th>
<th>Placebo N = 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Headache</td>
<td>10 (28)</td>
<td>6 (20)</td>
</tr>
<tr>
<td>Fever</td>
<td>9 (25)</td>
<td>7 (23)</td>
</tr>
<tr>
<td>Oropharyngeal pain</td>
<td>6 (17)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>4 (11)</td>
<td>3 (10)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>3 (8)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Constipation</td>
<td>3 (8)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Nausea</td>
<td>3 (8)</td>
<td>2 (7)</td>
</tr>
</tbody>
</table>

* Reported in at least 8% of pediatric and adult patients receiving KANUMA and at a higher incidence than in patients receiving placebo

Other less common adverse reactions reported in pediatric and adult patients who received KANUMA included anxiety and chest discomfort.

6.2 Immunogenicity

As with all therapeutic proteins, there is potential for immunogenicity. Patients have developed anti-drug antibodies (ADA) to KANUMA. Immunogenicity assay results are highly dependent on the sensitivity and specificity of the assay and may be influenced by several factors such as: assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparison of the incidence of antibodies to KANUMA with the incidence of antibodies to other products may be misleading.

Patients with Rapidly Progressive LAL Deficiency Presenting within the First 6 Months of Life

Seven of the 9 infants with rapidly progressive disease had at least one post-treatment ADA assessment, and 4 of these 7 (57%) patients developed ADA during treatment with KANUMA. Two of the 4 ADA-positive patients were determined to be positive for neutralizing antibodies that inhibit in vitro enzyme activity and cellular uptake of the enzyme. At the time of initial ADA positivity, 3 patients were receiving a dosage of 1 mg/kg once weekly and 1 patient was receiving a dosage of 3 mg/kg once weekly. Three of the 4 ADA-positive patients had ADA titers monitored from the initiation of treatment. ADA titers decreased to undetectable levels in the remaining 3 patients while receiving continued treatment at a dosage of 3 mg/kg once weekly.

Hypersensitivity reactions occurred in all 4 of the ADA-positive patients, whereas they occurred in only 1 of the 3 ADA-negative patients. None of the patients discontinued treatment. In 1 patient, decreased growth velocity in a setting of neutralizing antibodies to KANUMA was observed.

Pediatric and Adult Patients with LAL Deficiency

Five of 35 (14%) KANUMA-treated pediatric and adult patients who completed the 20-week double-blind period of study treatment developed ADA. All patients were receiving 1 mg/kg once every other week. All 5 ADA-positive patients first developed measurable ADA titers within the first 3 months of exposure. Two of the 5 ADA-positive patients had a measurable ADA titer at only one time point. In the 3 patients with measurable ADA titers at multiple time points, ADA titers decreased to undetectable levels during continued treatment. Two patients developed neutralizing antibodies during the open-label extension phase after 20 weeks and 52 weeks of treatment with KANUMA, respectively. There is no clear association between the development of ADA and decreased efficacy in pediatric and adult patients treated with KANUMA.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

There are no available data on KANUMA in pregnant women to inform any drug-associated risk. Animal reproductive studies conducted with sebelipase alfa showed no evidence of embryolethality, fetotoxicity, teratogenicity, or abnormal early embryonic development at dosages up to 164 and 526 times the human dosage of 1 mg/kg every other week (based on AUC) in rats and rabbits, respectively.

The background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively.

Animal Data

Sebelipase alfa administered during the period of organogenesis to rats (on gestation days 6, 9, 12, 15 and 17) and rabbits (on gestation days 7, 10, 13, 16 and 19) at intravenous doses up to 60 and 50 mg/kg, respectively, (approximately 164 and 526 times the human AUC of 1387 ng∙h/mL at 1 mg/kg dose administered once every other week, respectively) did not cause any adverse effects on embryofetal development. A pre- and postnatal development study in rats showed no evidence of adverse effects on pre- and postnatal development at intravenous doses (administered on gestation days 6, 9, 12, 15, 18, and 20 and days 4, 7, 10, 14, and 17 postpartum) of sebelipase alfa up to 60 mg/kg/day (approximately 164 times the human AUC of 1387 ng∙h/mL at 1 mg/kg dose administered once every other week).

8.2 Lactation

Risk Summary

There are no data on the presence of sebelipase alfa in human milk, the effects on the breastfed infant, or the effects on milk production. It is not known if sebelipase alfa is present in animal milk. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for KANUMA and any potential adverse effects on the breastfed infant from sebelipase alfa or from the underlying maternal condition.

8.4 Pediatric Use

Safety and effectiveness of KANUMA have been established in pediatric patients aged 1 month and older. Clinical trials with KANUMA were conducted in 56 pediatric patients (range 1 month to <18 years old) (see Clinical Studies [14]).

8.5 Geriatric Use

Clinical trials of KANUMA did not include any patients aged 65 years old and older. It is not known whether they respond differently than younger patients.

11 DESCRIPTION

KANUMA (sebelipase alfa) is a recombinant human lysosomal acid lipase (LAL). Lysosomal acid lipase (EC 3.1.1.13) is a lysosomal glycoprotein enzyme that catalyzes the hydrolysis of cholesteryl esters to free cholesterol and fatty acids and the hydrolysis of triglycerides to glycerol and free fatty acids.

KANUMA is produced by recombinant DNA technology in the egg white of eggs laid by genetically engineered chickens. Purified sebelipase alfa is a monomeric glycoprotein containing 6 N-linked
12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action
LAL deficiency is an autosomal recessive lysosomal storage disorder characterized by a genetic defect resulting in a marked decrease or loss in activity of the lysosomal acid lipase (LAL) enzyme. The primary site of action of the LAL enzyme is the lysosome, where the enzyme normally causes the breakdown of lipid particles including LDL-c. Deficient LAL enzyme activity results in progressive complications due to the lysosomal accumulation of cholesteryl esters and triglycerides in multiple organs, including the liver, spleen, intestine, and the walls of blood vessels. The resulting lipid accumulation in the liver may lead to increased liver fat content and progression of liver disease, including fibrosis and cirrhosis. Lipid accumulation in the intestinal wall leads to malabsorption and growth failure. In parallel, dyslipidemia due to impaired degradation of lysosomal lipid is common with elevated LDL-c and triglycerides and low HDL-cholesterol (HDL-c).

Sebelipase alfa binds to cell surface receptors via glycosylated epitopes expressed on the protein and is subsequently internalized into lysosomes. Sebelipase alfa catalyzes the lysosomal hydrolysis of cholesteryl esters and triglycerides to free cholesterol, glycerol, and free fatty acids.

12.2 Pharmacodynamics
In clinical trials, after initiation of dosing with KANUMA, breakdown of accumulated lysosomal lipid led to initial increases in LDL-c and triglycerides within the first 2 to 4 weeks of treatment. In general, following increases in LDL-c and triglycerides, these parameters decreased to below pre-treatment values within 8 weeks of treatment with KANUMA.

In all patients with elevated alanine aminotransferase (ALT) values at baseline (82 of 84 patients in clinical trials), reduced ALT values were observed, generally within 2 weeks after initiation of treatment with KANUMA. Treatment interruption resulted in increases in LDL-c and ALT values and decreases in HDL-c.

12.3 Pharmacokinetics
The pharmacokinetic profile of sebelipase alfa was nonlinear with a greater than dose-proportional increase in exposure between 1 and 3 mg/kg based on non-compartmental analysis of data from 26 adults. No accumulation was observed following once weekly or once every other week dosing.

Using a population pharmacokinetic model, sebelipase alfa pharmacokinetic parameters were estimated for 65 pediatric and adult patients who received intravenous infusions of KANUMA at 1 mg/kg at Week 22 (Table 4); 24 patients were 4 to 11 years old, 23 were 12 to 17 years old, and 18 were adults. The pharmacokinetic profiles of sebelipase alfa were similar between adolescents and adults. The T_max and T_1/2 were similar across all age groups.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>4-11 years old</th>
<th>12-17 years old</th>
<th>≥18 years old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>N=24</td>
<td>N=23</td>
<td>N=18</td>
</tr>
<tr>
<td>AUC (ng/hr/mL)</td>
<td>942 (388)</td>
<td>1454 (699)</td>
<td>1861 (599)</td>
</tr>
<tr>
<td>C_max (ng/mL)</td>
<td>490 (205)</td>
<td>784 (480)</td>
<td>957 (303)</td>
</tr>
<tr>
<td>T_max (hr)</td>
<td>1.3 (0.6)</td>
<td>1.1 (0.3)</td>
<td>1.3 (0.6)</td>
</tr>
<tr>
<td>CL (L/hr)</td>
<td>31.1 (7.1)</td>
<td>37.4 (12.4)</td>
<td>38.2 (12.5)</td>
</tr>
<tr>
<td>Vc (L)</td>
<td>3.6 (3.0)</td>
<td>5.4 (2.4)</td>
<td>5.3 (1.6)</td>
</tr>
<tr>
<td>T 1/2 (min)</td>
<td>5.4 (4.3)</td>
<td>6.6 (3.7)</td>
<td>6.6 (3.7)</td>
</tr>
</tbody>
</table>

Parameter values were estimated using a population pharmacokinetic model. AUC = Area under the plasma concentration time curve. C_max = Maximum concentration. T_max = Time to maximum concentration. CL = Clearance. Vc = Central volume of distribution. T 1/2 = Half-life.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
Long-term studies in animals to evaluate carcinogenic potential or studies to evaluate mutagenic potential have not been performed with sebelipase alfa. Sebelipase alfa at intravenous doses up to 60 mg/kg administered twice weekly (approximately 164 times the human AUC of 1387 ng·h/mL at 1 mg/kg dose administered once every other week) was found to have no adverse effect on fertility and reproductive performance of male and female rats.

13.2 Animal Toxicology and/or Pharmacology
In a rat disease model of LAL deficiency that exhibits several abnormalities analogous to the human disease, sebelipase alfa administered intravenously at dosages up to 3 mg/kg once weekly showed improvements in survival, body weight gain, organ weight reduction, reduction in serum transaminases (ALT and aspartate aminotransferase (AST)), reduction in serum and hepatic lipids, and improvement in liver histopathology.

14 CLINICAL STUDIES

14.1 Patients with Rapidly Progressive LAL Deficiency Presenting within the First 6 Months of Life
A multicenter, open-label, single-arm clinical study of KANUMA was conducted in 9 infants with LAL deficiency who had growth failure or other evidence of rapidly progressive disease prior to 6 months of age. The age range at entry was 1 to 6 months. Patients received KANUMA at 0.35 mg/kg once weekly for the first 2 weeks and then 1 mg/kg once weekly. Due to suboptimal clinical response, doses in all 6 surviving patients were escalated to 3 mg/kg once weekly, between 4 and 88 weeks (median 11 weeks) after starting treatment at 1 mg/kg. In one patient, the dose was escalated to 5 mg/kg once weekly at Week 88 due to decreased growth velocity in a setting of positive neutralizing anti-drug antibodies to KANUMA. The recommended dosage for these patients is 1 mg/kg to 3 mg/kg once weekly (see Dosage and Administration (2.1)).

Efficacy of KANUMA was assessed by comparing the survival of 9 KANUMA-treated patients at 12 months of age with an untreated historical cohort of 21 patients with a similar age at disease presentation and clinical characteristics. Of the 9 KANUMA-treated infants, 6 patients survived beyond 12 months of age, compared to 0 of 21 patients in the historical cohort, all of whom died by 8 months of age. The median age of the 6 surviving KANUMA-treated patients was 18.1 months (range 12 to 42.2 months).

Following initiation of treatment with KANUMA 1 mg/kg once weekly, weight-for-age z-scores improved in 3 of 5 surviving patients with growth failure, and all 6 surviving patients demonstrated improvements in weight-for-age z-scores following dose escalation to 3 mg/kg once weekly.

14.2 Pediatric and Adult Patients with LAL Deficiency
The safety and efficacy of KANUMA were assessed in 66 pediatric and adult patients with LAL deficiency, aged 4 to 58 years (71% were less than 18 years old). In a multicenter, double-blind, placebo-controlled trial. Patients were randomized to receive KANUMA at a dosage of 1 mg/kg (n=36) or placebo (n=30) once every other week for 20 weeks. Eighty-two of the 66 (94%) patients had LDL-c of 130 mg/dL or greater at study entry. The majority of patients (58%) had LDL-c above 190 mg/dL at study entry, and 24% of patients with LDL-c above 190 mg/dL remained on lipid lowering medications.

At the completion of the 20-week double-blind period of the trial, a statistically significant improvement in percent change from baseline in LDL-c was observed in the KANUMA-treated group as compared to the placebo group (mean difference and 95% CI: -22%, [-33%, -15%], p<0.0001). LDL-c of less than 130 mg/dL was achieved in 13 of 32 (41%) vs. 14 of 24 (58%; p<0.0001) KANUMA-treated patients and in only 2 of 30 (7%; [0%, 16%]) placebo-treated patients with baseline LDL-c of 130 mg/dL or greater. A statistically significant improvement in percent change from baseline at 20 weeks was also observed in the KANUMA-treated group compared to the placebo group for other parameters related to LAL deficiency, including decreases in non-HDL-c (mean difference and 95% CI: -21%, [-30%, -15%], p<0.0001) and triglycerides (mean difference and 95% CI: -14%, [-28%, -1%], p=0.0375), and increases in HDL-c (mean difference and 95% CI: 20%, [12%, 26%], p<0.0001). The effect of KANUMA on cardiovascular morbidity and mortality has not been established.

Patients treated with KANUMA had larger reductions from baseline in ALT values and liver fat content (measured by MRI), compared to patients treated with placebo. The significance of these findings as they relate to progression of liver disease in LAL deficiency has not been established.

Open-label Extension
Pediatric and adult patients who participated in the randomized, placebo-controlled trial were eligible to continue treatment in an open-label extension. Sixty-five of 66 patients (98%) entered the open-label period in which all patients received KANUMA at a dosage of 1 mg/kg once every other week. During the open-label extension, patients treated with KANUMA for up to 36 weeks demonstrated improvements in lipid parameters, including LDL-c and HDL-c levels, and ALT.

16 HOW SUPPLIED/STORAGE AND HANDLING
KANUMA 20 mg/10 mL vials are supplied as a sterile, preservative-free, nonpyrogenic solution in single-use, glass vials.

NDC 25682-007-01: 20 mg/10 mL vial
Store KANUMA under refrigeration between 2°C to 8°C (36°F to 46°F) in original carton to protect from light. Do not shake or freeze the vials.

17 PATIENT COUNSELING INFORMATION

Hypersensitivity Reactions, including Anaphylaxis
Adviser patients and caregivers that reactions related to administration and infusion may occur during and after KANUMA treatment, including life-threatening anaphylaxis and severe hypersensitivity reactions. Inform patients of the signs and symptoms of anaphylaxis and hypersensitivity reactions, and have them seek immediate medical care should signs and symptoms occur (see Warnings and Precautions (5.1)).

Manufactured by: Alexion Pharmaceuticals Inc.
Cheshire, CT 06410
US License Number: 1743
1-888-765-4747 (phone)

KANUMA is a trademark of Alexion Pharmaceuticals Inc.